|
Valitut rajaukset: PTIVIS23H Poista rajaukset
TT00CN70-3007
Itslearning and contact classes are the main communication channels used on this course. The student is required to have a computer capable of running a simple Ubuntu virtual machine.
5000BL71-3006
It'sLearning, Moodle, Teams and email.
TE00BL66-3013
Each coach determines his/her own communication channel for the team. To reach the coordinating team, use the e-mails of the members below. Coordinators: Engineering: Jonna Heikkilä, jonna.heikkila@turkuamk.fi Heli Kanerva-Lehto, heli.kanerva-lehto@turkuamk.fi Business: coming.. ICT and Industrial Engineering: Teppo Saarenpää, teppo.saarenpaa@turkuamk.fi
TT00CN68-3006
Use of AI in assignments and final project: USE OF AI REPORTED. AI can be used in the creation of outputs, but student must clearly report its use. Failure to disclose the use of AI will be interpreted as fraud. The use of AI may affect to assessment. ----------------------------------------------------------------------------------- Qualifications and Prerequisites: Before taking an "Introduction to Data Engineering with Python" course, students typically need a foundational understanding of several key areas. Here are the mandatory and recommended prerequisite courses and topics. 1. Mandatory Prerequisites:  1.1. Programming: 1.1.1. Introduction to Programming: Knowledge of programming fundamentals, including concepts like variables, loops, conditionals, and functions.  1.1.2. Python Programming: Familiarity with Python, including basic syntax, data types, control structures, and function and modules 1.1.3. Error Handling  1.1.4. Object-oriented programming (OOP)  1.1.5. Data Manipulation: Skills in using Pandas library including DataFrames and Series, reading, writing, filtering, and transforming data 1.2. Databases: Knowledge of how databases work, including concepts like tables, keys, normalization, and indexing. 2. Recommended Topics: 2.1. Algorithms and Data Structures: Basic understanding of algorithms and data structures such as arrays, lists, trees, and graphs, which are crucial for data processing 2.2. Having the fundamental knowledge of cloud services or passing the Cloud Services Course in TUAS (Lecturer: Ali Khan) 2.3. Version Control Systems: Basic understanding of tools like Git for version control. 2.4. Basic Algebra and Calculus: Fundamental math skills to handle data transformations and calculations. 2.5. Statistics: Understanding of basic statistical concepts like mean, median, standard deviation, and probability distributions. 2.6. Being familiar with VirtualBox and Ubuntu
5051252-3006
Administrative information: Peppi platform Additional course information: itslearning workspace Main contact channels: MS Teams and email The use of AI: Allowed in learning tasks and can be used, but the use must be reported. Artificial intelligence can be used in the creation of outputs, but the student must clearly report its use. Failure to disclose the use of AI will be interpreted as fraud. The use of AI may affect the assessment.
TE00CR11-3001
It'sLearning, Teams, email
TE00BM91-3010
Opinnäytetyöllä on oppimisympäristössä (ITS) oma ympäristö: ICT Opinnäytetyöt - Thesis work), jossa työskentelyyn liittyvät ohjeet. Lisäksi Teams, jossa pidetään opinnäytetyöseminaarit. Pääsyvaatimukset kurssille: - Opiskelija opiskellut osaamispolussa vähintään vuoden ajan (30 op) - Opiskelija ilmoittautunut kurssille Tutkimusviestintä (pakollinen opinto) TAI on muuta kautta saanut osaamisen liittyen opinnäytetyön kirjoittamiseen